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Alzheimer’s disease (AD) was associated with abnormal organization and function of

large-scale brain networks. We applied group independent component analysis (Group

ICA) to construct the triple-network consisting of the saliency network (SN), the central

executive network (CEN), and the default mode network (DMN) in 25 AD, 60 mild

cognitive impairment (MCI) and 60 cognitively normal (CN) subjects. To explore the

dynamic functional network connectivity (dFNC), we investigated dynamic time-varying

triple-network interactions in subjects using Group ICA analysis based on k-means

clustering (GDA-k-means). The mean of brain state-specific network interaction indices

(meanNII) in the three groups (AD, MCI, CN) showed significant differences by ANOVA

analysis. To verify the robustness of the findings, a support vector machine (SVM) was

taken meanNII, gender and age as features to classify. This method obtained accuracy

values of 95, 94, and 77% when classifying AD vs. CN, AD vs. MCI, and MCI vs. CN,

respectively. In our work, the findings demonstrated that the dynamic characteristics

of functional interactions of the triple-networks contributed to studying the underlying

pathophysiology of AD. It provided strong evidence for dysregulation of brain dynamics

of AD.

Keywords: Alzheimer’s disease, large-scale brain networks, triple-network, functional connectivity, dynamic

cross-network interaction

INTRODUCTION

As a neurodegenerative disease, Alzheimer’s disease (AD) has an irreversible pathology, a long
course of disease, and a progressive aggravation (1). Although the relationship between mild
cognitive impairment (MCI) and AD is still inconclusive, some researchers believe that MCI is
a transition period between normal aging and AD (2). Many studies report that cognitive decline
and preclinical stages of impairment in AD are primarily due to disruption of brain networks. The
episodic memory and executive functions of AD appear to be abnormal, and the related functions
are closely related to the normal functioning and integrity of the brain network. Most of the brain
networks involved in AD research are: default mode network (DMN), central execution network
(CEN), and salience network (SN). The changes of DMN, CEN, and SN may be related to the
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pathological changes of AD (3–6). For example, important areas
of the DMN are closely related to memory, among which the
medial temporal cortex and hippocampal memory are strongly
correlated. Research has shown that DMN exhibits functional
connectivity disruption in AD (6, 7). Dennis et al. found that
functional connectivity and network integrity decline gradually
during normal aging, but decline more rapidly in AD patients,
with the greatest impact on DMN (8). The main component
of the SN is the inferior frontal cortex, which is closely related
to cognitive function and plays an important role in cognitive
control (9). CEN is a brain network implicated in human
cognitive control, and its frontal regions are implicated in
episodic memory. The nodes of the CEN include the dorsolateral
prefrontal cortex and the lateral posterior parietal cortex. The
study of CEN is helpful for the monitoring of brain network in
MCI patients (10).

Functional Magnetic Resonance Image (fMRI) is a non-
invasive brain imaging technology with high spatiotemporal
resolution and good repeatability. More and more applications
in the field of brain science. Resting-state fMRI(rs-fMRI) is the
data obtained when the subject lies in the magnetic resonance
scanner without any stimulation and task processing. Compared
with the task state, the research subject’s coma, anesthesia and
other states are also included. In the resting state, the brain also
has inherent neural activity patterns and can perform specific
functions. It is of great significance to use rs-fMRI to study
the topology of the brain network. The advent of fMRI has
brought about a growing number of methodological tools for
studying cognitive function and dysfunction (11–14). Effectively
separating meaningful neural signals from fMRI images and
constructing brain functional network has important research
significance for its earlier disease prediction. However, most
studies mainly use static functional connectivity (sFC) from
fMRI. Large-scale dynamic functional network connectivity
(dFNC) provides more context-sensitive, dynamic, and direct
view at higher network level. It distinguishes brain network
dynamics between normal and diseased populations (5, 13,
15–18). The characteristics of dFNC data are that time is
constantly changing, reflecting brain activity that changes over
time, and different functional connectivity networks can be
obtained at different moments, in sharp contrast to sFC. Menon
proposed a triple network model consisting of the DMN, SN
and (19). Many studies have demonstrated that the dynamic
interactions among triple-network (DMN, SN, CEN) are critical
for complex cognitive tasks. These contribute to early recognition
of Alzheimer’s disease (6, 12, 20–24).

Independent Component Analysis (ICA) is a method
based on data analysis, without a priori assumptions, it
can separate and extract the physiological noises such as
head movement, heartbeat and breathing in the BOLD
signal, while the brain activity-related components can
be separated and extracted. Signal components can form
a network of related functional brain areas, which is an
increasingly widely used data analysis method in rs-fMRI
research (25). Although the components extracted by the
ICA method have good reproducibility and reliability, the
traditional ICA method applied to individual fMRI data

cannot extract the common characteristics among a group
of subjects (26). The Group Independent Component
Analysis (Group ICA) method is based on the traditional
independent component analysis, through the fusion of
independent components across individuals, to construct a
group independent component, thus reflecting the overall
characteristics of the brain operating mechanism of a group of
subjects (27).

In our work, we employed Group ICA to construct
the triple-network (CEN, SN, and DMN) in AD, MCI
and cognitively normal (CN). Then, we performed dFNC
analysis of the three groups (MCI-AD-CN). Finally,
we used statistical analysis and support vector machine
(SVM) to validation. The study workflow was shown
in Figure 1.

MATERIALS AND METHODS

Subjects
The data for our study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database
(www.adni-info.org). ADNI was established in 2003 at the
initiative of Principal Investigator Michael W. Weiner, and was
funded by the National Institutes of Health Security and the
National Center for Aging Health and more than 20 private
companies. It was designed to aid in the diagnosis of AD by
using data including clinical diagnosis, neuroimaging, genetic
material, and biomarkers. ADNI studies were conducted in
ADNI-1, ADNI-GO, ADNI-2, and ADNI-3 phases. After three
phases of research, the ADNI dataset has collected multiple
multimodal data including MRI, PET, blood biomarkers,
cerebrospinal fluid biomarkers (Aβ, tau protein) and genetic
material. MRI was considered the preferred neuroimaging
examination for AD. MRI data in the ADNI dataset were divided
into three categories: AD, MCI, and CN subjects (28). fMRI was
primarily measured by the relative levels of deoxyhemoglobin
in each voxel, and rs-fMRI was to let the subject’s brain
completely empty, and to observe the characteristics of the
interconnection of nerve fibers in the brain state without special
activity (29).

In our study, rs-fMRI data (N = 145) included
60 cognitively normal (CN), 60 Mild Cognitive
Impairment (MCI) and 25 AD subjects. The
characteristics of the used subjects were shown
in Table 1. The table showed that there were
significant differences among the three groups in
terms of gender (p < 0.001), age (p < 0.001), and
MMSE (p < 0.001).

Data Preprocessing
MRI is one of the most commonly usedmethods for AD auxiliary
diagnosis. MRI is divided into T1 and T2, where T1 is used to
observe anatomical structures, T2 is used to display the lesion
tissue. In this study, T1 is used as a reference image to which
rs-fMRI data can be registered. The rs-fMRI (64 × 64 × 48)
were obtained using an echo-planar imaging (EPI) sequence.
Data preprocessing process: (1) Convert rs-fMRI from DICOM
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FIGURE 1 | The study workflow. (A) Data Preprocessing, 145 rs-fMRI data were preprocessing. (B) Triple-network Identification and Dynamic Triple-Network

Interactions. At this stage, group independent component was achieved; dynamic functional interactions were using a sliding window approach; cluster analysis

based on k-means clustering method. (C) Experimental verification, were used statistical analysis and support vector machine approach.

format to Nifti format using MRIcro software [MRIcro software
guide (sc.edu)]. (2) We use SPM12 (30) and DPABI (31) for
preprocessing as follows: (1) Remove the first 10 time points,
Time points is set to 187, TR is set to 3 s; (2) Slice timing
correction (slice number= 48, Reference slice= 48); (3) Realign
and normalize: the MRI image of each subject is registered to
the MNI standard space, and the volume distribution map of

the brain gray matter is obtained after processing, and then
the gray matter volume image of the registered standardized
image is resampled to calculate 3 × 3 × 3 mm3 relative gray
matter volume map (61 × 73 × 61); Normalize by DARTEL;
(4) Smooth by using FWHM (full width at half maximum)
of 8 × 8 × 8 mm3; (5) Band-pass filtering with 0.01∼0.1Hz;
(6) Standardized settings: polynomial trend, frist on 24 head
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TABLE 1 | The clinical characteristics of subjects.

Subjects CN MCI AD P

Number 60 60 25 -

Gender (M/F) 17/43 29/31 14/11 <0.001

Age (mean ± sd) 72.7 ± 7.3 76 ± 8.5 76.7 ± 9.1 <0.001

MMSE (mean ± sd) 28.9 ± 1.3 27 ± 2.2 21.1 ± 3.9 <0.001

CN, Cognitively Normal; MCI, Mild Cognitive Impairment; AD, Alzheimer’s disease; MMSE,

Mini mental status examination. T-tests were used for gender, age, and MMSE.

motion parameters, white matter signal, and cerebrospinal
fluid signal.

Triple-Network Identification
Group Independent Component Analysis
In our study, we employed group independent component
analysis (Group ICA) to construct the triple-network (DMN, SN,
and CEN). The principle of Group ICA was as follows: multiple
subjects were compressed into fractions by principal component
analysis (PCA) and then concatenated, the concatenated data
was again reduced by PCA to reduce the fractions, and finally
the mixed data was extracted by ICA to separate independent
components. We set the ICA components to 30.

The mixed data of M subjects were reduced to the number of
components by PCA, as shown in Formula 1.

x̄(m) =
(

F(m)
)−1

x(m), 1 ≤ m ≤ M (1)

Where x̄(m) is the matrix of L×V after dimensionality reduction,

x(m) is the original mixture matrix of T × V ,
(

F(m)
)−1

is the

dimensionality reduction matrix of L × T, T and V are the
number of time points and voxels of the data, and L is the time
after dimensionality reduction dimension.

Then, we concatenated all the data after dimensionality
reduction and used further dimensionality reduction as in
Formula 2.
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where Q(−1) is the dimensionality reduction matrix of N × LM.
After two PCA dimensionality reduction, the ICA algorithm was
used to extract independent components. The ICA algorithm
model was shown in Formula 3.

X = Âŝ (3)

where Â is the mixture matrix of N × N, and ŝ is the matrix of
N × V to represent N independent source signals.

Finally, it was reconstruction, using the estimated mixing
matrix and source signal to reconstruct the time series and spatial
images ofM subjects, then the reconstructed source signal was as
in Formula 4.

Ŝ(m) = (Â(m))
−1

(Q(m))
−1

× (F(m))
−1

x(m) (4)

We employed GIFT toolkit (http://icatb.sourceforge.net/) for
Group ICA (32, 33). We identified the DMN, SN, left CEN, and
right CEN in 145 subjects.

The Analysis of DFNC
After extracting the BOLD time series of all ROIs of the subject,
an exponentially decaying (ED) sliding-window strategy was
applied to construct the dFNC of the brain. In this study, a sliding
window of length N was selected, and the time series of length
L was divided into T overlapping subsequences according to a
certain step size s, where T = (L− N)/s+ 1, then calculated the
FNC matrix corresponding to each window.

The ED weights are computed as Formula 5.

wt = w0e
(t−T)/θ , t = 1, ...,T, (5)

where w0 = (1− e−1/θ )/(1− e−T/θ ), t is the tth time point within
the sliding window, T is the sliding window length (12), and the
parameter θ controls the influence from distant time points. θ is
set to a third of the window length (34). We set T to 39 s (TRs =
3 s) and sliding step to 1 s (35).

The definition of edge in brain network research was the
functional connection between two brain regions. The dFNC
between the two brain regions was determined by weighted
Pearson correlation (wPC). It can reflect the interaction with time
series of any two nodes xt and yt as Formula 6.

rw =

∑T
t=1 wt(xt − x)(yt − y)

√

∑T
t=1 wt(xt − x)2

√

∑T
t=1 wt(yt − y)2

(6)

where x =
∑T

t=1 wtxt
T and y =

∑T
t=1 wtyt
T , then we calculated the

z-transform of the weighted Pearson correlation.

Dynamic Triple-Network Interactions
To make the clustering results independent of the number of
subjects, 25 subjects with no significant differences in age and
gender were selected from each group for cluster analysis. We
explored group difference analysis based on k-means clustering
method (GDA- k-means) (36).

The lower triangle (i.e., the six contiguous edges that do
not repeat) of the weighted dynamic connectivity matrix M
of 4∗4 of each subject was extracted to form the data set D,
D = {m1,m2, ...,mx}. Afterwards, the functional connectivity
matrix M of each group of subjects was clustered individually
by using k-means. Since the distance function was not specified
in the citation, the default Euclidean distance was used for the
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FIGURE 2 | The spatial distribution of components in SN, DMN, left CEN, and

right CEN.

distance calculation, and the optimal number K of clusters was
found using the sihouette maximum method (37), which finally
C divided the sample set intoK clusters. The process of clustering
was as follows, firstly, k samples were randomly selected from
the dataset D as the initial k prime vectors, which represented
as µ = {µ1,µ2, ...,µk} C initialize the final cluster division as
Ct = ϕ, (t = 1, 2, ..., k). After that, the samples xt and each center-
of-mass vector were taken to µj calculate the Euclidean distance
dij, which was calculated as shown in Formula 7.

dij =

√

(mi − µj)
2 (7)

The corresponding class corresponding to the xi smallest dij fetch
was noted as λi and the sample clusters were updated Cλi =

Cλi

⋃

{xi}. The above clustering steps were repeated and the
sample clusters C = {C1,C2, ...,CK} are finally output.

For each subject, we calculated the mean lifetime of each
brain state based on the average time spent consecutively. We
employed the brain state-specific network interaction index
(NII) (9, 38) to characterize DMN, SN, and CEN network
interactions (7).

The NII is calculated as shown in Formula 8.

NII = f (PCSN,CEN)− f (PCSN,DMN) (8)

FIGURE 3 | The variation of the window weight value.

where

f (PC) =
1

2
ln(

1+ PC

1− PC
) (9)

PC is Pearson’s correlation between the time series of two
networks, such as PCSN,DMN refers to correlation between the
time series of SN and DMN. f (PC) computes Fisher z-transform
of Pearson Correlation (PC) between ROI time series. That is,
the fisher-z changes of the functional connectivity coefficients
of SN-LCEN and SN-RCEN were summed and subtracted from
the fisher-z changes of the functional connectivity coefficients
of SN-DMN.

The Classification Based on Dynamic
Triple-Network Interactions
To validation the robustness of differences in dynamic triple-
network interactions, we calculated the mean of NII (meanNII)
between the three groups. We took meanNII, age, gender as
features and used a liner support vector machine (SVM) for
classification (39). Due to the limitation of sample size, we
applied the leave-one-out cross-validationmethod to evaluate the
performance of the classifier, in order to ensure the reliability
and stability of the results. The classification performance
was measured by the classification accuracy, precision, recall,
and specificity.

RESULTS

Triple-Network in Alzheimer’ Disease
Using template multiple regression methods to screen
components 18, 29, 25, and 12, we identified four networks
SN, DMN, left CEN, and right CEN in Alzheimer’ disease. The
spatial distribution of components was shown in Figure 2.

Since the TR of data was 3 s, the window length was 39 s,
that is, 13 time points, and the step size was 1 TR; the data was
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FIGURE 4 | Brain States. AD group showed six states, MCI group showed seven states, and the CN group showed seven states. Color denotes distinct states in

each subject.

FIGURE 5 | Mean lifetimes of dBS. s1∼s7 were state 1∼state 7.

187 time points, 175 time windows. The variation of the window
weight value wt with time t was as Figure 3.

We examined dynamic cs brain networks identified by the
Group ICA and found six states in AD group, seven states in
MCI group, and seven states in CN group. Brain States (BS) were
shown in Figure 4.

Dynamic Triple-Network Interactions
In this study, the mean lifetimes of dynamic Brain States (dBS)
were compared of the three groups. Mean lifetimes of dBS were
shown in Figure 5. From the figure, the mean lifetimes of s2, s3,
and s5 in CN group were more significant than in MCI group,
but the mean lifetimes of s2 and s5 in AD group were significant
than in the MCI group and CN group.

The meanNII in dBS was compared of the three groups. As
can be seen from Figure 6, the meanNII of the s1, s3, s5 in AD
group was more significant than in other groups (p < 0.05); the
meanNII of the s1, s4 in MCI group was more significant than in
CN group (p < 0.05).

The Classification Based on Dynamic
Triple-Network Interactions in AD
With the meanNII, age and gender as features, SVM was trained
in three groups of AD, MCI, and CN. The results of the SVM for
the classification were shown in Table 2. The method achieved
95% accuracy for distinguishing AD from CN, 94% for AD
converters against CN, and 77% for CN converters against MCI.

DISCUSSION

In our work, we aimed to explore the effective dynamic
connectivity based a triple-networkmodel in Alzheimer’s disease.
We identified three large-scale networks (DMN, SN, CEN)
important for cognitive control and goal directed behavior in AD
(i.e., from CN to MCI to AD) (7, 40). Due to the complexity
and unobservable characteristics of brain networks, an indirect
method should to be found to explore the network properties
of the brain, and the group ICA method provided a feasible
means for the study of brain networks. Group ICA estimates the
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FIGURE 6 | Time-varing network interaction index (NII). s1∼s7 were state 1∼state 7.

TABLE 2 | Predictive performance of the SVM classifier.

Accuracy Precision Recall Specificity

AD-CN 0.95 0.93 0.96 0.94

AD-MCI 0.94 0.96 0.91 0.93

CN-MCI 0.77 0.76 0.77 0.76

activation area and time series of each network, and the time
series of the network corresponding to the activation area may
reflect the dynamics of the network.

As hypothesized, abnormal in AD patients through dynamic
functional interactions. Dynamic triple-network coupling
measures should predict Alzheimer’s disease (41–43). We found
that the dynamic functional network interactions of DMN,
CEN, and SN was impaired in AD patients and that these
abnormalities conduced to AD. Our findings were consistent
with previous studies. Most of the information was directionally
transmitted within the DMN, and the anterior default mode
network was related to self-referential processing and emotion
regulation, and the posterior default mode network was
involved in consciousness and memory processing through its
relationship with the hippocampus, which indicated plasticity.
Information was constantly transformed in cognitive processes
such as self-function, emotion, and conscious memory. The
SN was involved in the detection and integration of cognitive
and emotional information in the brain, indicating that as time
progresses, cognitive and emotional information flowed into the
SN for processing and integration. The CEN was involved in the
regulation of cognitive control processing (19, 44, 45).

In recent years, there were a great deal of evidence of
functional connectivity abnormalities inherent in Alzheimer’s
disease, but most studied static functional connectivity (46–
50). However, there were few studies on dynamic functional
connectivity and its relationship with clinical symptoms in
Alzheimer’s disease patients (51–53). The mean of NII in
the three group (AD, MCI, CN) was analyzed by ANOVA,

FIGURE 7 | Mean of dynamic triple-network interactions in the three groups.

the difference was significant (p = 0.007). The NII-measured
importance of dynamic triple-network interactions in the three
groups were AD > MCI > CN (Figure 7). We computed the
standard deviations of NII in the three groups (F = 1.87). The
standard deviation of NII among the three groups was not
significantly different (p= 0.16). The Pearson correlation analysis
of mean NII and MMSE was calculated (r = 0.281, p = 0.087).
Our findings demonstrated that the dynamic time-varying
characteristics of functional interactions between triple-networks
contributed to studying the underlying pathophysiology of
Alzheimer’s disease, as they captured the dynamic engagement
of relevant brain circuits.

To verify the robustness of the findings, we implemented SVM
method to examine the extent of differences among AD, MCI,
and CN groups in relation to dynamic functional connectivity.
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We found that dynamic triple-network interactions have high
classification accuracy. This finding indicated that examining
the features of dynamic triple-network states may illustrate
positive relationships between DMN, SN, and CEN, contributed
to understanding Alzheimer’s disease.

In summary, our study demonstrated that large-scale
functional network dysfunctions in Alzheimer’s disease. In the
future, studies should be needed to investigate the longitudinal
stability of abnormal dynamics in different stages of Alzheimer’s
disease and to explore whether clinical outcomes differ from
DMN, CEN, and SN dysfunction. Analysis of large-scale
networks based on triple-networks has showed that they were
powerful tools to study the core features of Alzheimer’s disease.
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